Full Likelihood Inferences in the Cox Model: an Empirical Likelihood Approach
نویسندگان
چکیده
For the regression parameter β0 in the Cox model, there have been several estimators constructed based on various types of approximated likelihood, but none of them has demonstrated small-sample advantage over Cox’s partial likelihood estimator. In this article, we derive the full likelihood function for (β0, F0), where F0 is the baseline distribution in the Cox model. Using the empirical likelihood parameterization, we explicitly profile out nuisance parameter F0 to obtain the full-profile likelihood function for β0 and the maximum likelihood estimator (MLE) for (β0, F0). The relation between the MLE and Cox’s partial likelihood estimator for β0 is made clear by showing that Taylor’s expansion gives Cox’s partial likelihood estimating function as the leading term of the full-profile likelihood estimating function. We show that the log fulllikelihood ratio has an asymptotic chi-squared distribution, while the simulation studies indicate that for small or moderate sample sizes, the MLE performs favorably over Cox’s partial likelihood estimator. In a real dataset example, our full likelihood ratio test and Cox’s partial likelihood ratio test lead to statistically different conclusions.
منابع مشابه
Empirical Likelihood Approach and its Application on Survival Analysis
A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...
متن کاملModified signed log-likelihood test for the coefficient of variation of an inverse Gaussian population
In this paper, we consider the problem of two sided hypothesis testing for the parameter of coefficient of variation of an inverse Gaussian population. An approach used here is the modified signed log-likelihood ratio (MSLR) method which is the modification of traditional signed log-likelihood ratio test. Previous works show that this proposed method has third-order accuracy whereas the traditi...
متن کاملPenalized Empirical Likelihood and Growing Dimensional General Estimating Equations
When a parametric likelihood function is not specified for a model, estimating equations provide an instrument for statistical inference. Qin & Lawless (1994) illustrated that empirical likelihood makes optimal use of these equations in inferences for fixed (low) dimensional unknown parameters. In this paper, we study empirical likelihood for general estimating equations with growing (high) dim...
متن کاملEmpirical Likelihood in Survival Analysis
Since the pioneering work of Thomas and Grunkemeier (1975) and Owen (1988), the empirical likelihood has been developed as a powerful nonparametric inference approach and become popular in statistical literature. There are many applications of empirical likelihood in survival analysis. In this paper, we present an overview of some recent developments of the empirical likelihood for survival dat...
متن کاملA Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009